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Abstract. This paper is aimed at demonstrating the possibilities of adapting Quantile Regression Neural Network (QRNN) to estimate the distribution of compressive strength of high performance concrete (HPC). The database containing 1030 compressive strength data were used to evaluate QRNN. Each data includes the amounts of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate (in kilograms per cubic meter), the age, and the compressive strength. This study led to the following conclusions: (1) The Quantile Regression Neural Networks can build accurate quantile models and estimate the distribution of compressive strength of HPC. (2) The various distributions of prediction of compressive strength of HPC show that the variance of the error is inconstant across observations, which imply that the prediction is heteroscedastic. (3) The logarithmic normal distribution may be more appropriate than normal distribution to fit the distribution of compressive strength of HPC. Since engineers should not assume that the variance of the error of prediction of compressive strength is constant, the ability of estimating the distribution of compressive strength of HPC is an important advantage of QRNN.
Introduction

High-performance concrete (HPC) has been used in the concrete construction industry in recent years. In addition to the four basic ingredients in conventional concrete, Portland cement, water, and fine and coarse aggregates, the making of HPC needs to incorporate supplementary cementitious materials, such as blast furnace slag (BFS), fly ash, and chemical admixture, such as superplasticizer (SP) [1-2]. Traditionally, the experimental material model is established by statistical methods, such as regression analysis. Although regression analysis can build an explicit model, its accuracy is not enough for the compressive strength model of HPC because it is such a highly complex and nonlinear material that modeling its behavior is a difficult task.

The greatest advantage of artificial neural networks is their native nonlinear system characteristic, which makes them able to build various nonlinear models [1-9]. An artificial neural network is an information processing system that mimics a biological neural network, and has many features and advantages similar to a human brain. It uses a huge number of simple artificial neurons to mimic the abilities of biological neural networks. Artificial neurons are a simple simulation of biological neurons. They receive information from the outside environment or from other artificial neurons, make a very simple operation, and output the results to the external environment or to other artificial neurons. Detailed algorithms can be found in the literature [10].
A multi-layered perceptron (MLP) may be the most popular paradigm of artificial neural networks [10]. MLPs adjust their weights and biases by learning rules so as to construct accurate nonlinear models between the input variables and the output variables. Although MLP neural networks can build accurate nonlinear models, they cannot estimate the distribution of the dependent variables (outputs). In this paper, we employed a new variation of MLP, Quantile Regression Neural Network (QRNN), which can estimate the distribution of concrete strength of HPC.
In Section II, the principle of QRNN will be described. In the third section, we testify its performance of building quantile predictive models of concrete strength of HPC. In Section IV, we estimate the parameters of distribution of concrete strength. In Section V, we make a summary of the study.

Quantile regression neural networks
The principle of Quantile Regression Neural Networks
In recent years, quantile regression analysis has gradually been applied in various fields [11-12]. The reason is that it can employ the median or other quantiles as the dependent variables in building regression models, which overcomes the disadvantage that the traditional regression analysis can only employed the mean as the dependent variables.

Quantile regression is a statistical method which can be used to estimate the conditional quantile function. The goal of traditional regression analysis is to minimize the sum of squared errors,
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while the goal of quantile regression analysis is to minimize the sum of weighted absolute errors:
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Where (= quantile, 0<(<1. Y = actual value of the dependent variable. 
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= predictive value of the dependent variable. X = vector of independent variables. ( = estimated values of coefficient vector.
If a ( value is chosen, the coefficient vector can be estimated by minimizing the above SWAE error function. For example, when ( = 0.5, the weight of the error that the actual value is higher than the predictive value is 0.5, and the weight of the error that the actual value is lower than the predictive value is also 0.5; hence the error function is neutral to the two types of error. In other words, the probabilities that the actual value is greater or less than the predictive value are all 0.5, and the predictive value is an estimate of the median. 

When ( = 0.1, the weight for the error that the actual value is higher than the predictive value is 0.1, while the weight for the error that the actual value is less than the predictive value is 0.9. Therefore, to balance the two types of error, the probability that the actual value is greater (or less) than the predictive value would be close to 0.9 (or 0.1). Therefore the predictive value is an underestimate of the dependent variable; the probability that the predictive value is higher than the actual value would be close to 0.1. Conversely, when ( = 0.9, the predictive value is an overestimate of the dependent variable; the probability that the predictive value is higher than the actual value would be close to 0.9.
The concept of quantile regression can also be used in neural networks to overcome the shortcomings that they can only employ the mean as the dependent variables. The goal of traditional neural networks is to minimize the sum of squared errors, while the goal of quantile regression neural networks (QRNN) is to minimize the sum of weighted absolute errors. Although quantile regression neural networks have been proposed for years [13], but practical applications are still rare.
Estimation of distribution of predictive value
This study proposes a method to employ QRNNs to estimate the probability distribution (Figure 1):

(1) Build concrete strength predictive models using QRNNs with θ = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, respectively.

(2) To estimate the probability distribution of a specific sample of concrete, input the input vector of the sample into the above 11 QRNNs to obtain 11 concrete strength predictive values.
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Where 
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 represents the QRNNs trained by minimizing the sum of weighted absolute errors with θ.
(3) The parameters of the probability density function (PDF) can be estimated by the following formula
Case 1. Normal distribution


[image: image6.wmf])

,

,

(

ˆ

1

s

m

q

q

-

F

=

ND

ND

Y


(4)
Find the optimal 
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Where 
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Case 2. Logarithmic normal distribution
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Where 
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(4) The probability density function can be estimated by the following formula
Case 1. Normal distribution
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Where 
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 is the probability density function of normal distribution.

Case 2. Logarithmic normal distribution
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Where 
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 is the probability density function of logarithmic normal distribution.
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Figure 1. Quantile Regression Neural Network (QRNN)
Building Qunatile Predictive Models of Concrete Strength with QRNN
In this study, the database available on the UCI Machine Learning Repository [14] containing 1030 compressive strength data were used to evaluate QRNN. Each data includes the amounts of cement, blast furnace slag (BFS), fly ash, water, superplasticizer (SP), coarse aggregate, fine aggregate (in kilograms per cubic meter), the age (in days), and the compressive strength (in MPa). The database often contains unexpected inaccuracies, for instance, the class of fly ash is sometimes not reported. The greatest difficulty seems to be related to the application of superplasticizers. They are used from different manufacturers, of different chemical composition, and without details concerning solid contents in the suspension. Eight hundred data were randomly selected as training set, and the rest, 230, as testing set.

The training results of QRNN with θ =0.5 are shown in Figure 2, which show the scatter diagrams of predictive values of the QRNN against values actually observed in laboratory for the training examples and testing examples. Their coefficients of determination are 0.875 and 0.882, respectively. The two scatter diagrams and their coefficients of determination indicate a significant enough correlation.

The training results of QRNN with θ = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, respectively are shown in Figure 3, which show the scatter diagram for the training examples. For example, the scatter diagram of θ = 0.01 show that the probability that the predictive value is greater than the actual value is very low (P=0.010). As the θ increases, the probability increases. When θ = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, respectively, the probabilities that the predictive value is greater than the actual value are 0.010, 0.108, 0.200, 0.310, 0.400, 0.509, 0.600, 0.691, 0.789, 0.898, and 0.981, respectively. When θ=0.99, that the probability that the predictive value is greater than the actual value is very high (P=0.981). The evidence shows that the QRNN can build accurate quantile models of compressive strength of high performance concrete.
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Fig. 2 The actual value and predictibe value by QRNN with θ = 0.5
Estimating the Distribution of Concrete Strength
After building concrete strength quantile models using QRNN with θ = 0.01, 0.1, 0.2,…, 0.7, 0.8, 0.9, 0.99, respectively, to estimate the probability distribution of a specific sample of concrete, input the input vector of the sample into the above 11 QRNNs to obtain 11 concrete strength predictive values. Then the parameters of the probability density function can be estimated by the equations (4) to (9). 

To illustrate the procedure, we choose a typical sample as a case study. The input vector of the sample is listed in Table 1. The vector can be input into the 11 trained QRNNs to obtain 11 concrete strength predictive values (
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) listed in the second row in Table 2 and Table 3. The parameters of the normal and logarithmic normal probability density function can be estimated by the equations (4) to (9). The optimal estimations are as follows
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The optimal parameters: 
[image: image26.wmf]198

.

5

,

83

.

33

=

=

s

m



[image: image27.wmf](

)

å

-

=

q

q

q

2

ˆ

ˆ

qrnn

ND

Y

Y

E

=25.10
(14)
Logarithmic normal distribution

The optimal parameters: 
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The 11 quantile values of normal distribution 
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) are listed in the third row in Table 2 and 3. Finally, their probability density function values can be estimated by the equation (12) and (13) and are listed in the fourth row in Table 2 and 3. The two probability density functions are shown in Figure 4 and 5. 
The probability density functions of two other typical samples are shown in Figures 6 to 9. These probability density functions imply that the variance of them are rather different. In statistics, if the variance of the error is constant across observations, then the random variable is homoscedastic. Conversely, if there are sub-populations that have different variance from others, then the random variable is heteroscedastic. Therefore, the predictive concrete strength may be rather heteroscedastic.
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Fig. 3 The actual value and predictibe value of training examples by QRNN with θ = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99.
Table 1. A typical sample chosen as the case study
	Cement
	Slag
	Fly ash
	Water
	SP
	Coarse

Aggregate
	Fine

Aggregate
	Age (day)

	298
	0
	107
	186
	6
	879
	815
	28


Table 2. Estimation of the distribution of concrete strength: Normal distribution

	θ
	0.01
	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8
	0.9
	0.99
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	25.06
	26.54
	28.86
	30.18
	31.10
	33.19
	34.86
	35.52
	37.13
	41.09
	48.64
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	20.82
	26.67
	29.13
	30.90
	32.42
	33.83
	35.25
	36.77
	38.54
	41.00
	46.85
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	0.0048
	0.0314
	0.0501
	0.0622
	0.0691
	0.0713
	0.0691
	0.0622
	0.0501
	0.0314
	0.0048

	Table 3. Estimation of the distribution of concrete strength: Logarithmic normal distribution

θ
	0.01
	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8
	0.9
	0.99
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	25.06
	26.54
	28.86
	30.18
	31.10
	33.19
	34.86
	35.52
	37.13
	41.09
	48.64
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	23.01
	27.13
	29.08
	30.57
	31.91
	33.21
	34.56
	36.07
	37.92
	40.64
	47.92
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	0.0073
	0.0410
	0.0611
	0.0721
	0.0768
	0.0762
	0.0709
	0.0611
	0.0468
	0.0274
	0.0035
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	Figure 4. Pobability density function of the 

typical sample: Normal distribution
	Figure 5. Pobability density function of the 

typical sample: Logarithmic normal distribution
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	Figure 6. Pobability density function of the second typical sample: Normal distribution
	Figure 7. Pobability density function of the second typical sample: Logarithmic normal distribution
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	Figure 8. Pobability density function of the third typical sample: Normal distribution
	Figure 9. Pobability density function of the third typical sample: Logarithmic normal distribution


To evaluate which distribution may be more appropriate to fit the distribution of compressive strength of HPC, we compute the average of the sum of squared errors of the training and testing examples by the equations (6) and (9). The results are listed in Table 4. The sum of squared errors of logarithmic normal probability density function is less than that of normal one. Therefore, logarithmic normal distribution may be more appropriate than normal distribution to fit the distribution of compressive strength of HPC.
Table 4. The average of the sum of squared errors in optimizing the parameters of the normal and logarithmic normal probability density function.
	
	Training examples
	Testing examples

	Normal 
distribution
	26.2
	28.0

	Logarithmic normal distribution
	20.5
	21.2


Conclusions

This paper is aimed at demonstrating the possibilities of adapting Quantile Regression Neural Networks.to estimate the distribution of compressive strength of high performance concrete. This study led to the following conclusions:

1. The QRNNs can build accurate quantile models and estimate the distribution of compressive strength of HPC.
2. The various distributions of prediction of compressive strength of HPC show that the variance of the error is inconstant across observations, which imply that the prediction is heteroscedastic.
3. The logarithmic normal distribution may be more appropriate than normal distribution to fit the distribution of compressive strength of HPC.
Since engineers should not assume that the variance of the error of prediction of compressive strength is constant, the ability of estimating the distribution of compressive strength of HPC is an important advantage of QRNNs.
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